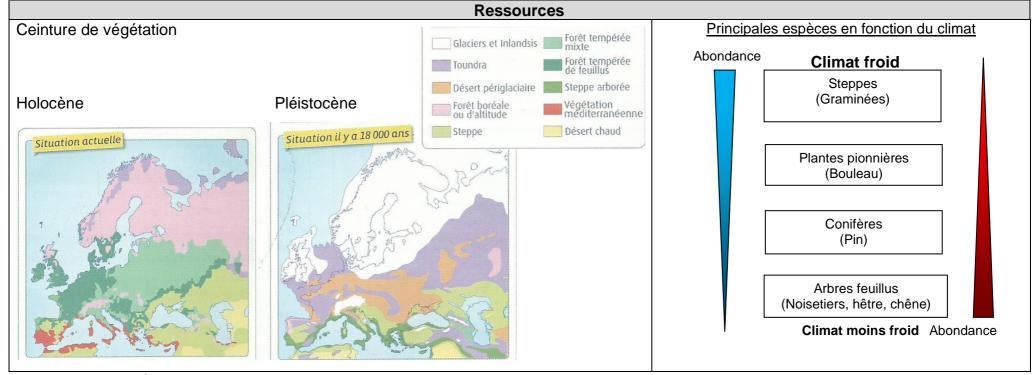
Objectif: comprendre les changements climatiques - tableur, microscopie.

Observation : rappeler le principe du thermomètre δ^{18} O.

Problème : comment étudier et reconstituer les variations climatiques ?

Matériel : blouse, livre p. 238, pollens (deux échantillons de référence plus l'inconnu), fiche identification des pollens, microscope, fichiers de données, tableur, par groupe : console, sonde EXAO CO₂ et pH, glace, tourbe, bec électrique, bêcher, Erlenmayer, eau décarbonatée.

Compétences	Activités expérimentales	Capacités	
dans le respect des consignes de sécurité et dans le respect de	Réaliser l'ECE p. 2 et 3. - La quantité de CO ₂ . L'influence du taux de CO ₂ , réaliser une des expériences p. 4.	Mettre en évidence l'amplitude et la période des variations climatiques étudiées à partir d'une convergence d'indices. Mobiliser les connaissances acquises sur les conséquences des	
Rechercher, extraire et exploiter l'information utile	corrélation entre taux de CO ₂ et variation de température ? Une relation de causalité ? Mettre en relation les conséquences des activités humaines sur l'effet de serre et sur le cycle du carbone.	activités humaines sur l'effet de serre et sur le cycle du carbone. Exploiter les équations chimiques associées aux transformations d'origines géologiques pour modéliser les modifications de la concentration en CO ₂	
l'information utile	- Les hommes et l'activité humaine. Rechercher les traces préhistoriques pouvant renseigner sur le climat. Livre p. 245. Bilan	atmosphérique. Mobiliser les acquis antérieurs sur cycle du carbone biosphérique et l'enrichir des connaissances sur les réservoirs géologiques (carbonate	
Raisonner, argumenter, conclure en exerçant des démarches scientifiques et un sens critique	Schématiser le cycle du carbone en présentant particulièrement les causes des variations de sa teneur	matière organique fossile) et leurs interactions.	


Rédaction d'un compte-rendu sur feuille double faisant apparaître la démarche expérimentale.

1 - Méthode et indices : les pollens Fiche sujet

Mise en situation et recherche à mener

On peut reconstituer les climats du passé à partir des glaces polaires, mais la méthode présente quelques inconvénients (limitée géographiquement, limité dans le temps, nécessite des spectromètres de masse).

On cherche à caractériser le climat terrestre par d'autres méthodes et avec d'autres indices.

Ressources complémentaires.

Végétation	Quelques espèces	Exigences climatiques	Climats	
Herbacées	Graminées (Poacée)	Froid et sec		
Arbres	Pin sylvestre (Pinus sylvestris)	Ne craint pas les gelées de printemps - craint les fortes pluies - supporte la chaleur	Froid à tempéré sec	
	Bouleau (Betula sp.)	uleau (Betula sp.) Résiste au froid ; très exigeant en eau - craint la sécheresse.		
	Chêne pédonculé ou sessile (<i>Quercus</i> sp.)	Préfère les climats relativement chauds - exige de la lumière	Tempéré à chaud	
	Noisetier (Corylus avellana)	Résiste au froid, demande une humidité de l'air élevée - craint la sécheresse	Tempéré à chaud	
	Hêtre (Fagus sylvatica)	Humidité atmosphérique - sol bien drainé - craint les gelées de printemps	De la plaine aux plateaux de l'étage montagnard (400 à 1300m)	

Fiche sujet – candidat générique

Étape A : Proposer une stratégie et mettre en œuvre un protocole pour résoudre une situation problème (recommandée : 40 min)

Proposer une stratégie de résolution réaliste, à partir des ressources, du matériel et du protocole d'utilisation proposés ; permettant de valider le fait que la palynologie constitue un outil pour identifier les changements climatiques.

Présenter et argumenter votre stratégie à l'oral.

Préciser le matériel dont vous aurez besoin pour mettre en œuvre votre stratégie.

Mettre en œuvre votre protocole pour obtenir des résultats exploitables afin de valider le fait que la palynologie soit un outil permettant l'identification de changements climatiques.

Si besoin et à tout moment et au plus tard après 15 minutes, appeler l'examinateur pour modifier à l'oral, votre stratégie.

Appeler l'examinateur pour vérifier les résultats de la mise en œuvre du protocole.

Étape B : Communiquer et exploiter les résultats pour répondre au problème (recommandée : 20 min)

Sous la forme de votre choix, **présenter et traiter les données brutes** pour qu'elles apportent les informations nécessaires à la résolution du problème.

Répondre sur la fiche-réponse candidat, appeler l'examinateur pour vérification de votre production.

Exploiter les résultats pour résoudre la situation problème.

Répondre sur la fiche-réponse candidat.

Matérial disponible et protocole d'utilisation du matérial

Materiel dis	hombie er	protocole u	utilisation	uu materiei
Afin do validor l'ir	tárôt do la	nalvnologio	dane l'ider	atification dec

Afin de valider l'intérêt de la palynologie dans l'identification des changements climatiques :

Rem : agiter les tubes contenant les suspensions avant prélèvement

- observer au microscope les échantillons de référence holocène ou pléistocène et identifier les différents pollens à l'aide de la clé de détermination

<u>Matériel :</u>

- suspension de pollens extraits de tourbe
- microscope optique
- lame, lamelles
- pipette
- fichiers de données chambedaze
- FTB 17 clé palynologie

- observer le prélèvement pour la période inconnue (holocène ou pléistocène)
- identifier deux grains de pollen différents
- indiquer quelles informations climatiques ils apportent et déterminer le climat.

Appeler l'examinateur pour vérifier le résultat et éventuellement obtenir une aide

- utiliser les données recueillies dans une tourbière pour rendre compte de l'évolution climatique
- tracer le graphique de l'évolution des pollens en fonction du temps
- sélectionner quatre espèces qui vous semblent représentatives de l'évolution locale de la flore
- utiliser les fonctionnalités du logiciel pour éliminer de votre graphe les espèces non retenues
- justifier les choix réalisés et expliquer l'évolution climatique.

Appeler l'examinateur pour vérifier le résultat et éventuellement obtenir une aide

- La quantité de CO₂.

Matériel disponible et protocole d'utilisation du matériel Afin de déterminer le rapport entre la température et la dissolution du CO₂ dans l'eau :

Groupe 1 (vers le mur)

- mesurer la teneur en CO2 de l'eau du robinet dans l'enceinte
- placer l'enceinte dans de l'eau chaude
- mesurer la teneur en CO₂ de l'eau dans l'enceinte (10 minutes)

Groupe 2 (vers les fenêtres)

- mesurer la teneur en CO2 de l'eau décarbonatée dans l'enceinte
- placer l'enceinte dans de l'eau froide (glaçons)
- mesurer la teneur en CO₂ de l'eau dans l'enceinte (10 minutes)

Appeler l'examinateur pour vérifier le résultat et éventuellement obtenir une aide

comparer les résultats des groupes 1 et 2, que peut-on envisager au niveau mondial ?

Afin de déterminer le rapport entre le taux de CO₂:

Groupe 3 (1 poste vers les fenêtres)

- placer de la tourbe dans un Erlenmayer un tube à dégagement relié à l'enceinte (eau décarbonatée)
- · chauffer l'Erlenmayer avec le bec électrique
- mesurer le pH de l'eau décarbonatée et le taux de CO₂ dans l'enceinte (10 minutes)

Appeler l'examinateur pour vérifier le résultat et éventuellement obtenir une aide

établir un lien entre pH et CO2, que peut-on envisager au niveau mondial?

Matériel:

- matériel EXAO
- sonde CO₂
- sonde pH
- sonde température
- enceinte
- eau décarbonatée
- glace
- eau chaude
- Erlenmayer
- tube à dégagement
- bec électrique
- tourbe